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ABSTRACT
Smartphones and “app” markets are raising concerns about how
third-party applications may misuse or improperly handle users’
privacy-sensitive data. Fortunately, unlike in the PC world, we have
a unique opportunity to improve the security of mobile applications
thanks to the centralized nature of app distribution through popu-
lar app markets. Thorough validation of apps applied as part of
the app market admission process has the potential to significantly
enhance mobile device security. In this paper, we propose AppIn-
spector, an automated security validation system that analyzes apps
and generates reports of potential security and privacy violations.
We describe our vision for making smartphone apps more secure
through automated validation and outline key challenges such as
detecting and analyzing security and privacy violations, ensuring
thorough test coverage, and scaling to large numbers of apps.

Categories and Subject Descriptors
D.4.6 [Software]: Operating Systems—Security and Protection

General Terms
Design, Security

1. INTRODUCTION
The success of Apple’s App Store and Google’s Android Mar-

ket has transformed mobile phones into a first-class development
platform. The number of third-party applications orappsthat the
average smartphone user installs has grown rapidly [6], and brows-
ing app stores has become a form of inexpensive entertainment for
millions of people. Apps are small programs that often provide
their functionality by accessing sensitive data (e.g., account, pass-
word, contact, financial records, medical records, GPS, camera,
and microphone) and services located in the cloud (e.g., Google,
Facebook, and Twitter). Ensuring that apps properly handle such
high-value sensitive data is an important and difficult problem.
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There are growing concerns about both buggy and malicious
apps that may leak, steal, or destroy sensitive data. Recent inci-
dences of malicious apps found in the Android Market show that
smartphones are susceptible to the same kinds of malware that have
long plagued the PC world [5]. Furthermore, many other apps,
while lacking malicious intent, may unintentionally compromise
sensitive data. Recent studies of the Android and iPhone plat-
forms [8,19,27] have found that apps frequently share private data
in an undesirable way by leaking it to unknown destinations and
third-party ad servers.

Similar to approaches for securing PCs, research on mobile de-
vice security has explored end-host system solutions such as scan-
ning for viruses using signatures. Our prior work on TaintDroid [19]
used taint tracking to detect unwanted exfiltration of sensitive data.
It allows a user to track the propagation of sensitive data through
and between apps and can raise an alert when sensitive data leaves
the device. However, by the time a leak has been detected and an-
alyzed, it may be too late to protect the sensitive data. Other work
explores running end-host replicas (dubbed virtual smartphones or
clones) in the cloud to enable more powerful analysis [15, 25].
However, these approaches still rely on detecting malicious or ab-
normal behavior after apps have been installed and run on individ-
ual smartphones.

Fortunately, unlike in the PC world, we have a unique opportu-
nity to improve the security of mobile applications thanks to the
centralized nature of app distribution; users typically obtain apps
through just a few popular app markets (e.g., Apple App Store,
Google Android Market, Amazon’s Appstore, Microsoft Windows
Phone 7 Marketplace). Applying security validation at the app-
market level offers a great opportunity to enhance mobile app se-
curity. However, app markets currently apply either limited manual
validation or no validation at all. The manual validation approach
involves experts employed by an app market or a third-party secu-
rity firm deciding whether to “approve” an app by manually exer-
cising its functionality and observing its behavior. Unfortunately,
experience with Apple’s App Store approval process has demon-
strated that this approach is less than ideal. Apple’s approval pro-
cess can introduce costly delays and uncertainty into the develop-
ment cycle, while banned behavior such as WiFi-3G bridging [9]
and alleged violators of Apple’s privacy policies [3, 4] have still
slipped into the App Store.

We believe that automated validation of smartphone apps at the
app-market level is a promising approach for drastically improving
the security of smartphones. We envision an automated validation
process applied either by market providers to apps submitted for in-



clusion, or by a third-party “market filter” service that advises users
about apps’ safety. Alternatively, a market provider could offload
the task of validating submitted apps to a third-party service. In
this paper, we present a system that aims to achieve this goal. At
a high level, the system utilizes “virtual” smartphones running in
the cloud to test and verify security properties of apps. By running
virtual smartphones in parallel, we can analyze apps at a massive
scale.

AppInspector is an automated security testing and validation
system that embodies this approach. We have identified several
important challenges such as generating inputs that sufficiently ex-
plore an app’s functionality, logging relevant events at multiple
levels of abstraction as the app executes, and using these logs to
accurately characterize an app’s behavior. Our exploration is pre-
liminary and intended to initiate discussion on mobile app valida-
tion. The rest of this paper discusses each of these challenges in
greater detail and proposes several promising techniques for ad-
dressing them.

2. SYSTEM OVERVIEW
We envision a security validation system that 1) analyzes apps

submitted to popular app markets, 2) identifies apps that exhibit
malicious behavior and should be removed or avoided by users,
and 3) facilitates producing easy-to-understand reports informing
users of potential privacy risks due to misuse or abuse of sensitive
data.

To analyze apps, we propose a dynamic approach that moni-
tors an app’s use of sensitive information and checks for suspicious
behavior such as excessive resource consumption or deleting user
data. In order to scale to hundreds of thousands of apps in a cost-
effective manner, this process must be automated as much as pos-
sible. However, it would be cost-prohibitive to test such a large
number of apps on actual mobile devices. Instead, we propose us-
ing commodity cloud infrastructure to emulate smartphones. This
will enable a large-scale security validation service to be built at
low cost by utilizing the cloud for computation. A single host may
be capable of running multiple “virtual” device instances at once,
and cloud-hosted validation will enable testing many apps in paral-
lel.

Building such an app validation system presents three key chal-
lenges:

• C1. How do we track and log sensitive information flows and
actions to enable root cause analysis and application behavior
profiling?

• C2. How do we identify security or privacy violations from col-
lected logs and pinpoint the root cause and execution path that
led to the violations?

• C3. How do we traverse diverse code paths to ensure that analy-
sis is thorough?

In the rest of the paper, we give an overview of AppInspector,
our proposed system to address these challenges. At a high level,
the envisioned validation system consists of an AppInspectormas-
ter, which creates multiple AppInspectornodes, each including a
virtual smartphone. Validation is massively parallel, and requires
little coordination between tasks. The master coordinates schedul-
ing validation tasks on the nodes.

We outline the basic steps of a validation task, i.e., the analysis
of an app on a single AppInspector node. Figure 1 illustrates the
major components of the system mentioned in the overview. Ap-
pInspector first installs and loads the app on a virtual smartphone.
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Figure 1: AppInspector node architecture

An input generatorrunning on the host PC then injects user inter-
face events and sensor input. The smartphone application runtime
is augmented with anexecution explorerthat aids in traversing pos-
sible execution paths of the app. These two components address
C3. While the app runs, aninformation-flow and action tracking
component monitors privacy-sensitive information flows and gen-
erates logs, addressing C1. Finally, to address C2, AppInspector
providessecurity analysis toolswhich can be used after execution
completes to interpret the logs and generate a report.

In the following sections we further describe these four compo-
nents.

3. TRACKING APPS’ BEHAVIOR
AppInspector’s ultimate goal is to identify third-party apps that

behave maliciously or mishandle privacy-sensitive data,beforethey
are released through app markets. An additional goal is to help
smartphone users better understand how all apps handle their privacy-
sensitive information, to allow them to make informed decisions
about which apps to install and use. To this end, we must first de-
fine what we consider to be a security or privacy violation.

A security violation occurs when an app performs an action be-
yond the permissions granted to the app at install-time by the un-
derlying smartphone platform. For example, if an app accesses
sensitive data for which it is not granted permission, this is a clear
security violation.

Privacy violations can be more subtle. Because many apps col-
lect sensitive information such as location or user identifiers in or-
der to provide useful functionality, simply detecting a transmission
of sensitive data is not sufficient to declare a privacy violation. At
a high level, a privacy violation occurs when an app releases sensi-
tive data to a remote party in a way neither expected nor desired by
the user. However, encoding user preference and expectations in-
side automated analysis is difficult. As a result, for the purposes of
automated detection, we define a privacy violation as follows: we
consider a violation to occur when an app discloses sensitive infor-
mation without first notifying the user through a prompt or license
agreement.

Whether or not a disclosure is considered a privacy violation by
a user will often depend on its purpose or intent as perceived by
the user: for example, a user may tolerate her location being sent to
a content server to deliver content tailored to her location, but she
might object to her location being sent to a third-party analytics ser-
vice. In general, multiple components may be involved in causing
a violation. These may include the app itself, as well as third-party
analytics and advertising libraries plugged in by the developer for
monetization. However, we note that the involvement of third-party
code is not necessary for a violation to occur.

The key asset that AppInspector aims to protect is users’ privacy-
sensitive data. In order to detect leaks or disclosures and then iden-



tify the specific functionality or code component(s) involved in a
leak or disclosure, we need to pinpoint the root cause and execu-
tion path that led to an outgoing network transmission containing
sensitive data. To support this kind of analysis, it is necessary to
track bothexplicit flows, in which sensitive information propagates
through the app, external libraries, and system components through
direct data dependencies, as well asimplicit flows, e.g., when infor-
mation is leaked due to a sensitive value influencing the control
flow of the program.

Tracking Explicit Flows. To track explicit flows of sensitive data,
we apply system-widedynamic taint analysis, or taint tracking [17,
23]. Taint tracking involves attaching a “label” to data at a sensi-
tive source, such as an API call which returns location data, and
propagating this label through program variables, IPC messages,
and persistent storage, to detect when it reaches asink such as an
outgoing network transmission. We take advantage of the fact that
apps are often written primarily in interpreted code and executed
by a virtual machine to simplify the implementation and reduce the
runtime overhead of taint propagation as in TaintDroid [19]. How-
ever, since our analysis is performed offline, we can take a step
further to address some limitations of the system posed by its real-
time operation. For example, we can perform finer-grained taint
tracking for IPC messages and file I/O to avoid overtainting prob-
lems. In addition, we can also explore finer-grained taint tracking
for native functions.

Tracking Implicit Flows. Implicit flows leak sensitive information
through program control flow. For example, consider the follow-
ing if-else statement:if (w == 0) x = y; else z =
y; where the value ofw is privacy-sensitive. By watching the
values of x and z, which are affected by the control flow, one can
learn whetherw is 0 or not. To detect such leaks via implicit flows,
we can track control dependencies by creating control-dependency
edges; e.g., in the above example, edges betweenw andx and be-
tweenw andz. This can potentially result inovertainting, or label-
ing and propagating false dependencies. A possible approach for
addressing this drawback is to selectively propagate tainted control
dependencies as in DTA++ [20]. We note that tracking implicit
flows accurately is a long-standing challenge and an active area of
research.

Tracking Actions. In addition to flows of sensitive data, we track
and log actions performed by applications at multiple levels in the
software stack. For example, we record method invocations that
lead to disk and network I/O events or access hardware devices
such as GPS or accelerometers.

Choosing which information to log and the logging granularity
is an important decision which affects both the depth and quality of
analysis that can be performed later as well as the runtime perfor-
mance of the app under testing. While it is not critical for a system
driven by automated input to achieve real-time performance, large
performance overheads could affect the number of execution paths
that can be explored as well as the computational cost. With this in
mind, we propose logging the following information: taint source
and sink invocations, bytecode instructions which touch sensitive
data along with code origin, call graph information including inter-
preted methods and native code (JNI) invocations, IPC and file sys-
tem accesses involving sensitive data, and timestamps for all logged
events. We believe that we can log these categories of information
by instrumenting the application runtime and system libraries in a
way that will not impose prohibitive performance or log volume
overheads.

4. SECURITY ANALYSIS
The next challenge we consider is how to detect malicious be-

havior and misuse of sensitive data using our information-flow and
action tracking runtime.

Dependency Graphs. An abstraction that we believe will prove
useful isdependency graphs, which illustrate the path from the
event determined to be the root cause of a malicious use or a misuse
of sensitive data, through the data and control flow of the app and
potentially other system components, to an eventual network trans-
mission flagged as containing sensitive data. Dependency graphs
are constructed once testing of an app completes using informa-
tion collected during execution. On top of a dependency graph,
we can perform analysis such as backward slicing, filtering, and
aggregation. Backward slicing traverses vertices that are causally
dependent from sinks to sources. Filtering produces a filtered log
of an execution by excluding instructions which are unrelated and
unaffected by sensitive information. Finally, aggregation produces
a summarized log of an execution that affects sensitive information.

Using those primitives, we can write rules to identify misbehav-
ior and then attempt to pinpoint responsible APIs (e.g., third-party
library vs. application code), how data passed among apps (or be-
tween the app and the system), and the original action or API that
triggered the misbehavior (e.g., platform API vs. a button click)

We expect that detecting security violations such as an app ac-
cessing sensitive data without acquiring explicit permission can be
automated. However, it may be difficult to detect other misuses of
sensitive data.

Detecting misuse of sensitive data. Detecting misuse of sensitive
data by an app that was granted permission to access the data is
more difficult. End-user license agreements (EULAs) and explicit
notifications of data collection can provide useful hints for deter-
mining whether a disclosure of sensitive data amounts to a privacy
violation. When a disclosure is detected, we can check if a notifi-
cation is displayed to the user in the causal taint tracking path from
the taint source to the taint sink. Then, we can try to determine
if the notification contains messages informing the user of data
collection or requesting permission to transmit the data in ques-
tion. Similarly, we can check if the EULA mentions private data
collection. Even with EULAs, some “permissions-hungry” apps
may still request more permissions than they need to provide their
functionality. Another facet of our analysis could be to determine
the permissions actually needed by an app based on its observed
functionality. This could help encourage developers to build more
privacy-respecting apps.

Two promising approaches for interpreting the text of user noti-
fications and EULAs are: 1) applying natural language processing
and 2) crowdsourcing like Amazon Mechanical Turk [1]. In the fu-
ture, this analysis could be made easier if developers utilize P3P [7]
to express privacy policies in a machine-readable format.

5. INPUT GENERATION & EXECUTION
EXPLORATION

So far, we have discussed how to track flows of privacy-sensitive
information and analyze execution logs in order to identify security
and privacy violations. A fundamental limitation of the proposed
dynamic tracking techniques is that any analysis is limited to execu-
tion paths which are actually traversed during testing. In practice,
an app may offer many diverse execution paths, and to ensure that
privacy analysis is thorough, we must determine if there is a feasi-
ble path from any source of private information to a corresponding
sink among all feasible execution paths. This poses another chal-
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Figure 2: Code coverage for random testing (30 minutes)

lenge:Can we explore diverse execution paths of an app accurately
and scalably in an automated manner?

First, we must keep in mind that smartphone apps are primarily
event-based programs. Execution is typically driven by two broad
types of events: 1) UI input events, such as taps or drags on the
touchscreen or text inputs, and 2) callbacks triggered by other de-
vices or sensors, such as GPS location updates and camera photos.
As a result, our system must be capable of generating and deliver-
ing arbitrary sequences of UI and sensor input events. Fortunately,
many apps use standard UI input elements such as text input fields
and buttons provided by platform SDKs. To aid in delivering mean-
ingful inputs to these apps, it may be useful to instrument standard
UI libraries to treat common types of input elements such as user-
name/password prompts as special cases.

When considering which execution paths to explore, we would
like to avoid false negatives and false positives. A false negative
occurs when testing fails to cover a feasible execution path that
leads to potentially unwanted behavior such as transmitting sen-
sitive data. On the other hand, a false positive occurs when test-
ing explores and flags an execution path, when the path is glob-
ally infeasible. Exhaustively exploring all feasible execution paths,
which yields no false negatives or false positives, is not scalable
due to the well-known path explosion problem, i.e., the number
of execution paths grows exponentially as the number of branches
increases. This fundamental tradeoff between accuracy and scala-
bility presents a number of research opportunities.

To begin, we consider the simple strategy of random testing,
which explores concrete execution paths by injecting randomly-
generated inputs, thus avoiding false positives and scalability prob-
lems. While attractive in its simplicity, random testing has been
found to achieve poor code overage for other types of applica-
tions [10, 11]. To get an idea of whether random testing is a vi-
able strategy for testing smartphone apps for privacy violations, we
chose nine apps from a late 2010 survey of the most popular free
apps in each category of the Android Market [2] and supplied each
with a continuous stream of touchscreen taps and drags, hardware
button presses, and location updates for 30 minutes. To measure
coverage of execution paths, we modified Android’s Dalvik VM to
collect basic block code coverage. The results presented in Fig-
ure 2 show that random testing achieves 40% or lower coverage in
all cases. While the experiments did yield at least two disclosures
of location data, we observed that the tests commonly got “stuck”
in terminal parts of the apps’ UI. One example of the shortcom-
ings of random testing is the test of a social networking app, which
achieved less than 1% coverage because it could not progress past
the initial login prompt. To enable more thorough exploration of
execution paths, we advocate a more systematic approach.
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Figure 3: Branch counts of 1100 apps

Symbolic execution [21], which is typically used for finding bugs [11],
systematically explores all possible execution paths. Applying sym-
bolic execution to the entire software stack, including apps, li-
braries, and the OS, would eliminate all false negatives and false
positives. However, as we mentioned earlier, complete system-
wide symbolic execution is not scalable.

Instead, we propose applying a mixed-execution approach, also
known as concolic execution, which combines symbolic and con-
crete execution (e.g., as in CUTE [26], EXE [12], and S2E [14]).
Since our goal is to explore diverse paths of a specific third-party
app, it is only necessary to apply symbolic execution to the app it-
self, while the rest of the environment (e.g., Android libraries and
system) can be executed concretely. Selectively applying symbolic
execution to only part of the system for scalability was explored by
S2E [14]. However, for AppInspector, switching back and forth be-
tween symbolic execution and concrete execution is necessary not
only for scalability but also to enable analysis of apps that commu-
nicate with remote parties. When an app interacts with a remote
server hosted by a third party, it is not possible to symbolically
execute the server code, so AppInspector must concretely execute
request/response interactions with the server.

To test the basic feasibility of this approach in terms of scal-
ing, we analyzed branch counts of 1100 apps, which are shown in
Figure 3. 90% of the apps have 4187 or fewer branches. The re-
sults suggest that symbolic execution performed selectively may be
feasible for these apps: a recent study [10] demonstrated path ex-
ploration for programs with similar complexity. Parallel symbolic
execution [16] can further speed up symbolic execution.

In symbolic execution, we maintain state associated with the cur-
rent execution path including a path constraint (a boolean formula
over symbolic inputs) and symbolic values of program variables.
When we switch from symbolic execution to concrete execution,
we use a constraint solver to produce concrete values for the exe-
cution. To switch from concrete execution to symbolic execution,
we can add the concrete return value and related side effects as
part of a constraint. This can cause an overconstraining problem,
which can in turn lead to false positives. Another possibility is to
make the return value and related side effects symbolic; however
this could cause the system to explore infeasible paths since we
may not consider calling contexts properly. Exploring this tradeoff
is an important research question. Finally, we must decide which
program variables should be symbolic and which should be con-
crete. In general, we choose to make private information such as
location symbolic; in contrast, for some variables such as remote IP
addresses, we want to use the concrete value in order to determine
where private data is being sent.

We are developing this mixed execution engine on top of the
Android platform to evaluate the accuracy and scalability of our



proposed approach. At a high level, we plan to modify Android’s
Dalvik VM to add extra state including a path constraint or sym-
bolic expression to local variables, operands, and fields. In addi-
tion, we must interpret bytecodes in a way that properly manages
the extra state by updating the symbolic expression or by forking
and updating state for a branch using a constraint solver.

6. RELATED WORK
We briefly describe key related work on software security anal-

ysis. PiOS [18] shares the goal of investigating smartphone apps
for potential privacy violations. Unlike our work, PiOS employs
static data flow analysis techniques and is implemented for the Ap-
ple iOS system. The use of static analysis enables exploring broad
execution paths including infeasible ones. However, it is prone to
false positives because of well-known problems in static analysis
such as alias and context sensitivity problems. Furthermore, it pro-
vides incomplete analysis due to the difficulty of resolving messag-
ing destinations and handling system calls. We hope to overcome
these challenges by directly instrumenting the smartphone platform
and tracking information flow at runtime. Lastly, it is hard to de-
tect certain malicious behavior such as deleting sensitive data using
static analysis. By analyzing running programs, we can observe the
behavior of apps and detect this type of malicious behavior.

Dynamic information flow analysis techniques have proven use-
ful for intrusion detection and malware analysis. BackTracker keeps
track of the causality of process-level events for backtracking intru-
sion [22]. Panorama uses the instruction-level dynamic taint anal-
ysis for detecting information exfiltration by malware in Windows
OS [28]. Unlike these systems, we explore diverse execution paths
systematically by mixing symbolic and concrete execution focus-
ing on third-party smartphone apps.

Recently, TaaS proposed a service for automated software test-
ing [13]. CloudAV proposed antivirus as an in-cloud network ser-
vice [24]. Similarly, we envision AppInspector being used as a
service for privacy validation of smartphone apps in the cloud.

7. CONCLUSION
This paper presents our vision for implementing automated secu-

rity validation of mobile apps at app markets. We proposed AppIn-
spector, a security validation service that analyzes smartphone apps
submitted to app markets and generates reports that aid in identify-
ing security and privacy risks. We sketched the high-level design
of AppInspector and discussed several challenges and ideas for ap-
proaching them. We strongly believe that large-scale automated
validation of apps at central distribution points is an important step
toward enabling more secure mobile computing, and we urge the
research community to take advantage of this opportunity.
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