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Abstract
Authenticating users of computer systems based on their
brainwave signals is now a realistic possibility, made
possible by the increasing availability of EEG
(electroencephalography) sensors in wireless headsets and
wearable devices. This possibility is especially interesting
because brainwave-based authentication naturally meets
the criteria for two-factor authentication. To pass an
authentication test using brainwave signals, a user must
have both an inherence factor (his or her brain) and a
knowledge factor (a chosen passthought). In this study,
we investigate the extent to which both factors are truly
necessary. In particular, we address the question of
whether an attacker may gain advantage from information
about a given target’s secret thoughts.
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Introduction
Users look for both security and usability in the mobile
computing devices that they use every day. We want our
devices to protect access to our private data; but we
largely refuse time-consuming efforts to make it happen.
We rather prefer that the software (or hardware) makes
the security part easy for us. In short, we want our



computing security to also be usable.

This goal of usable security has motivated1 a variety of
technologies in recent years that promise to change the
way we authenticate ourselves to our computing devices.
For example, the most recent iPhone’s fingerprint scanner
authenticates users by reading a biometric signal. Other
means of authentication are made possible by the
availability of wearable computing devices that incorporate
accelerometers and gyroscopes, ECG and EMG sensors,
and even brainwave signal readers.

Among these examples, brainwave signal readers stand
out to many as an exciting option, because the idea of an
authentication system based fundamentally on our
thoughts seems at once both secure and convenient. It
seems secure because our thoughts are perceived
intuitively as private; and it seems convenient because we
always have our thoughts available and can usually access
them efficiently.

Moreover, brainwave signals don’t seem to suffer from the
same vulnerabilities as other biometric data used for
authentication, such as fingerprints and irises. These
vulnerabilities are often dramatized in popular films, in
which fingerprint scanners and iris readers are readily
fooled through clever uses of wax moldings or printing
technologies. Our thoughts, in contrast, seem secure
because we control our own minds; and imaginations for
changing this are grounded squarely in the science fiction
category.

Brainwave signal authentication itself is not science

1The motivation for new authentication technologies is grounded
in data from numerous experimental studies showing how security is
degraded by some heuristics that users actually employ when dealing
with text-based passwords.

fiction. Over the last two years, a number of researchers
have investigated the serious possibility of using
consumer-grade single-channel brainwave signal readers to
authenticate users into a computer system. The first such
project [3] involved a recruited user base of 15 students,
who gave samples of their brainwave signals for a set of 7
tasks. The authors developed a rubric for matching the
data from those signals to their originating subjects, and
designed an authentication system based on task
customization with a failure rate as low as 1%. That effort
demonstrated for the first time the plausibility of using
single-channel brainwave signal readers for authentication.

The case for authentication using brainwaves is made yet
stronger by the availability of consumer-grade brainwave
sensors and their integration with wearable devices (e.g.,
integration with augmented reality glasses [4]), as these
typically do not have keyboards, and often times do not
even have a touchscreen, making password-based and
PIN-based authentication difficult.

In this paper, we examine the system from [3] for
robustness against deliberate attacks from thought
impersonators. While the previous work showed that a
closed authentication system can be designed to work
effectively, our interest in this study is attuned toward the
extent to which that system can be broken. If an attacker
knows your passthought, and puts on the brain reader,
what is now the likelihood that they can successfully
authenticate as you? Our overall goal is to investigate the
susceptibility of brainwave signal authentication to
impersonation attacks; and a key technical objective is to
measure the extent to which the attacker is aided by more
information about the defender’s passthoughts.

Our methodology and results can be summarized as
follows. First, we calibrate the original authentication



system from [3] using a subset of their signal data, to get
a new system that correctly authenticates all of its own
users when they authenticate as themselves, and repels
authentication attempts from unauthorized users (or
attackers) within the same user base with a false
acceptance rate of 2%. We then test the strength of this
system using more than 6000 new impersonation attacks.
The impersonation efforts succeed more than the baseline
system average, but the total false acceptance rate for
impersonators remains under 5%. To assess the effects of
information on these new attacks, we group all
impersonation attacks according to the information
conditions of the attacker relative to the defender, and we
examine the aggregate trends in terms of subjects and in
terms of tasks. We find that while there is a slight overall
trend favoring more information in the aggregate, these
results are inconsistent across different tasks and different
subjects. The two main takeaways are that:

1. the authentication system is relatively robust
against impersonation attacks in general, and

2. the extent to which passthought knowledge aids an
attacker is strongly dominated by the extent to
which not having exactly the defender’s brain
hinders the attacker.

The rest of the paper is organized as follows. After
reviewing related work, we describe the experimental
setup for collecting brainwave signals. Then we describe
our general methodology for analyzing the brainwave
data, and extend this methodology to address our
research questions about impersonation attacks. Finally,
we discuss implications of our results before concluding.

Related Work
A series of studies since 2002 have demonstrated that
brainwave signals can be used to both identify and to
authenticate users with high accuracy. Earlier work
employed clinical-grade multi-channel EEG sensors
[6, 9, 10, 11], while more recent work extended the results
to consumer-grade multi-channel [2] and consumer-grade
single-channel [3] EEG technologies.

In most of these studies, the experimental subjects
performed identical mental tasks, and so the
authentication protocols had to differentiate the
brainwave “signatures” that are distinct to each subject.
This is in line with classical biometric authentication
where individuals are identified based on their distinctive
physiological characteristics such as fingerprints, iris
patterns, and heart rate variability [1].

The passthoughts-based approach [3, 12] allows users to
select their own personal secret (e.g., a particular song to
sing in their head) as their authenticator. A key
advantage of this approach is that the passthoughts can
be more easily changed when desired than the user’s
inherent brainwave signatures or fingerprints or iris
patterns. Furthermore, the passthoughts approach offers
the possibility of two-factor authentication, where the two
factors are the user’s brainwaves (“who you are”) and
their chosen secret (“what you know”).

Authentication based on keystroke dynamics [8] is similar
to authentication based on passthoughts. Users are
authenticated based on their typed password as well as
their typing rhythm. Killourhy and Maxion evaluated a
range of anomaly detectors and found that even if an
attacker has gained knowledge of the password, they can
still be detected, based on their typing rhythms, up to
approximately 90% of the time [5].



Martinovic et al. undertook the first study of security
attacks on consumer-grade brain-computer interface (BCI)
technologies [7]. They demonstrated that it is feasible to
launch a side-channel attack to gain private information
regarding, for example, the user’s bank card PIN or date of
birth. Specifically, the entropy of the private information
can be reduced by 15-40% compared to random guessing.
However, they did not consider an impersonation attack
against a BCI-based authentication system.

Experiment
Existing Brainwave Data
Our research extends prior experimental work [3] involving
human subjects, in which brainwave signals were collected
from 15 university students. In that study, the subjects
performed a series of 7 mental tasks. Signals were
collected ten times per subject per task. The data analysis
in that study yielded an authentication protocol which
correctly authenticated each brainwave trial from a given
test set with 99% accuracy.

Impersonation Data
To examine the robustness of this system to
impersonation attacks, we collected additional brainwave
signals from three researchers (the authors of this paper).
The experimental methodology followed all guidelines
approved by an Institutional Review Board.

We collected data from each impersonator in multiple
sessions, selecting tasks primarily to correspond to the
best tasks (for authentication purposes) for subjects in the
original study. Each impersonator recorded ten trial
samples for each selected task. Additional samples were
also collected to assess the effectiveness of various attack
strategies – for example, attempting an impersonation
without knowing the subject’s task, intentionally using the

wrong task, using the correct task with an unknown
secret, or using the correct task with the wrong secret.

Description of Mental Tasks
The 7 tasks used in the previous study – and also for our
impersonation efforts – are described below. For all but
one of the tasks, a single trial lasts for a duration of ten
seconds. A trial for the color task lasts 30 seconds. Here
we describe each task in terms of its instructions for the
subjects.

Breathing Task (breathing)
Close your eyes and focus on your breathing for 10
seconds.

Simulated Finger Movement (finger)
Imagine in your mind that you are moving your right index
finger up and down in sync with your breathing, without
actually moving your finger, for 10 seconds.

Sports Task (sport)
Select a specific repetitive motion from a sport of your
choosing. Imagine moving your body muscles to perform
this motion, for 10 seconds.

Song/Passage Recitation Task (song)
Imagine that you are singing a song or reciting a passage
for 10 seconds without making any noise.

Eye and Audio Tone Task (audio)
Close your eyes and listen for an audio tone. After 5
seconds, the tone will play; upon hearing the tone, open
your eyes and stare at the dot on the piece of paper in
front of you for an additional 5 seconds.

Object Counting Task (color)
Choose one of four colors – red, green, blue, or yellow.
You will be shown on a computer screen a sequence of six



images. Each image contains a 5x6 grid of colored boxes.
As each grid appears, count, silently in your mind, the
number of boxes corresponding to your chosen color. A
new grid will appear after each 5 seconds. This will
continue 6 rounds for a total of 30 seconds.

Pass-thought Task (pass)
Choose your own pass-thought. A pass-thought is like a
password; however, instead of choosing a sequence of
letters and numbers, one chooses a mental thought.
When instructed to begin, focus on your pass-thought for
10 seconds.

Brainwave Signal Collection
Brainwave signal data from each trial was transmitted via
a bluetooth network connection from the Neurosky
MindSet headset to a computer. The raw data includes
single-channel EEG signals in both the time and frequency
domains. Our analysis focuses on the power spectrum
data, a two-dimensional matrix which gives the magnitude
of the signal for every frequency component at every point
in time.

The original study involved fifteen subjects, seven tasks,
and ten trials per task, for a total of 1050 trials. The
current work supplements this corpus with brainwave
signals from three impersonators, each performing a
varying selection of task genres, 44 genres in total, with
ten trials per genre, for a total of 440 additional impostor
trials.

Data Analysis
To use brainwave signal trials for authentication, we need
both a clear method of representing trials, and a
mechanism for comparing them. From the onset this is
not a trivial task, as the signal itself can be represented in
multiple forms, and each individual trial may have a

different length due to slight discrepancies in the
recording times. Our analysis thus requires us to first
compress the data in a systematic way, that allows a
consistent method of comparison.

Data Compression
We begin our data analysis by processing the power
spectrum data to compress each trial. The method is as
follows. For each trial not corresponding to the color task,
we extract the middle five seconds in the temporal
dimension. For color trials, we extract a five-second
temporal component corresponding to the transition
between the first and second image. In the frequency
dimension, we extract data corresponding to the alpha
wave (8-12 Hz) and the beta wave (12-30 Hz) ranges.2

Finally, we compress the signal in the time dimension by
taking the median magnitude of each frequency over all
time. This compression yields a one-dimensional column
vector with one entry for each measured frequency.

Signal Differentiation
Our authentication system relies fundamentally on the
notion of signal similarity. We expect signals coming from
the same subject to be similar, and for signals coming
from different subjects to be dissimilar. Our chosen metric
for capturing this notion is the cosine similarity metric on
vectors. For two vectors u and v, their cosine similarity is
given by the equation:

similarity(u, v) =
u · v
‖u‖‖v‖

.

2Beta and alpha waves are associated with normal waking con-
sciousness and wakeful relaxation, and are the most well-studied brain-
wave patterns in neuroscience research.



Similarity gives a value between 0 and 1. If two signal
vectors are perfect scalar multiples of one another, then
their similarity is 1. If the signals have non-intersecting
support in their frequency components, then their
similarity is zero. In practice all our non-identical signals
fall between these two extremes.

Subject Authentication
To develop an authentication system we must extend the
comparison of data trials to a comparison among subjects.
Our methodology for this step relies on one fundamental
observation – that two trials from the same subject tend
to have higher similarity than trials between that subject
and another subject. The authentication system derived
from this observation reports its result for a given trial by
asking one basic question. Does this trial look more like
me on average, than it does everyone else?

Formally, for a fixed task, we define the test similarity
between a test trial and a subject to be the average
similarity between the test trial and all trials from the
subject for that task. We define the test cross similarity
between a test trial and a subject to be the average
similarity between the test trial and all trials from other
subjects for the same task. Our authentication method
assigns to each trial a score, which is the difference
between the test self similarity and the test cross
similarity, normalized by the test self similarity. A test trial
is authenticated if this score is above a certain threshold.
The thresholds in our system were chosen to minimize the
total error rate of the authenticator, but could also be
adjusted to account for preferences between false rejects
and false accepts.

Formally, the authenticator accepts a test trial for a given
subject if and only if

test self similarity − test cross similarity

test self similarity
> threshold.

Impersonation
Prior efforts [3] give evidence that an authentication
system can be built based on EEG signals recorded by
consumer-grade single-channel devices, but many
questions concerning the security of such a system remain
open. In particular, the existence of a secure closed
system does not imply robustness against various forms of
attacks from outside the system. The results in this
section make progress in addressing this issue.

Authentication System Optimization
Our first step was to develop a closed 15-subject
authentication system using the data from [3]. For each
subject, we determined a best task and a customized
threshold for the trial authentication protocol. The
protocol was then further optimized through the
elimination of outlier trials. Outlier trials were determined
based on two criteria. Either the trial was specifically
coded by the recording software as having poor signal
quality, or the trial was sufficiently dissimilar to other
trials from the same subject/task pair to cause a
degradation in the authentication system.

Note that the authentication system we developed here
for impersonation attacks differs from the one developed
in [3]. Our system optimizes parameters to minimize the
authentication error for every trial in the dataset, whereas
the earlier authentication system used a random set of
training trials to determine authentication parameters,
and tested these parameters on the subset of remaining
trials. Our system takes advantage of more trials for



training. We then use a new set of impostor trials for
testing. The impostor trials were not used in configuring
the authentication system.

Table 1 shows each subject’s best task, the optimal
thresholds, and the error rates for this authentication
system. Note that the false rejection rates (FRRs) are all
zero, meaning that every subject properly authenticates
each of his or her own trials. The false acceptance rates
(FARs) average 2%, implying that relatively few subject

trials are able to authenticate as any other subject. The
tasks and thresholds were selected to minimize the half
total error rate (HTER) which is defined as the average of
the two aforementioned error rates.

HTER =
FRR+ FAR

2

Overall, the average HTER across the 15 subjects is 1.0%.

Impersonation Attacks
Our next step was to study the robustness of this system
against outside attacks. For each of the 440 impostor
trials, we tried to authenticate the trial against every
subject using that subject’s best task. The authentication
system has 15 subjects, giving a total of 6600
impersonation attempts.

A motivating question for this research is to determine
whether knowledge of a subject’s chosen task or secret
has an effect on the success rate of an impersonation
attack. To address this question, we categorized each
impersonation attempt based on the answers to a
sequence of five yes-or-no questions.

First, is the impostor performing one of the specific 7
tasks, or not? If yes, then is this specific task the best
task for the subject being impersonated, or not? If yes,
then does the task have an additional secret, or not? If
yes, then does the impostor have a particular secret in
mind, or not? If yes, then does the secret match that of
the subject being impersonated, or not?

These questions divide impersonation attempts into 6
distinct categories: unknown task; wrong task ; correct
task no secret; correct task unknown secret; correct task
wrong secret; and correct task correct secret. By



evaluating the success probabilities within each category,
we gain information about exactly how much it helps an
impostor to know a particular task or secret.

Impersonation Results
The results of our impersonation attacks are presented in
Tables 2 and 3. Table 2 groups the results by task, and
Table 2 groups according to subject. In each table, the
column “Baseline FAR” refers to the FAR of our closed
15-subject authentication system. The column “Impostors
FAR” refers to the overall FAR aggregated over the six
different information conditions of the impersonation
attacks. The remaining columns represent the breakdown,
by information condition, of the FAR achieved by the
attackers.

From the task-centric view, we identify three trends.

First, for every task, the authentication rate for impostors
is an improvement over the baseline FAR observed in the
closed authentication system. Overall the improvement
over the baseline rate was 125%. Some improvement
should be expected because the parameters for the system
were optimized specifically against subjects in the original
dataset. Moreover, the acceptance rate for impostors is
still fairly low at 4.5%.

Second, the impostor trials in categories of unknown task
and unknown secret authenticated only about half as
often as trials in the other categories. In the unknown
task trials, impostors were free to choose any thought for
the purpose of impersonation; and for the unknown secret
trials, impostors were given a specific task category within
song, sport, color, or pass, but were free to choose any
thought within that category. The lower success rates of
impersonation within these categories give some evidence
that customized thoughts are more difficult to

impersonate when the customization is kept secret.

Third, within all the categories in which a specific task
was known and performed, there was no clear evidence to
indicate that an attacker benefits from having more
information about the specifics of the task. When
attempting to authenticate using the sport task,
impostors could succeed more often when thinking of the
correct sport, but the increase in success rate was mild,
and moreover the opposite was true for the color task. In
fact, for the color task, the highest rate of authentications
was reached by impostors performing the wrong task.
Finally, for the generic passthought task, knowing the
secret thought did not make any difference in the
acceptance rates.

We can separately identify two trends from the
subject-centric view.

First, although every subject experienced some successful
attacks, some subjects were more robust against attacks
than others. Subjects 3, 5, 12, and 13 all had less than
1.2% false acceptance rates against impersonation
attempts. Many of the successful attacks came against
subject 7, against whose defenses impostors performing a
silent rendition of “Freestyle swimming” authenticated
nearly 17% of the time.

Second, there are very few observable trends in terms of
dominance of information conditions that persist across all
subjects. The closest candidate seems to be that no
subject does the worst against impostor trials in the
category of unknown secret. The other categories all have
at least one subject who fares poorly against attacks of
that sort. Subject 1 performed worst against impostor
trials in the category of unknown task. Subjects 0, 3, 5, 6,
8, 10, 13, and 14 all fared worst against trials from the



wrong task category. Subject 2 did worst against trials
with no secret. Subject 4 did worst against trials with the
correct task but the wrong secret; while subjects 7, 9, and
11 did worst against impostor trials having the correct
secret. Subject 12 did equally bad with trials from the
categories of unknown task and no secret.

Discussion and Conclusion
A key premise underlying our investigative study is the
notion that individual thoughts can be impersonated. The
notion seems plausible for generic mental tasks such as
breathing, and also for a number of more customized
mental tasks such as jogging, swimming, or singing the
happy birthday song. In the course of our investigations,
however, we came across a few examples of customized
thoughts that proved to be quite difficult to impersonate.

We illustrate this difficulty with a single example, in which
we tried to impersonate subject 9, whose best identifying
task was the “song” task, and whose secret choice was
the “Serbian National Anthem”. While we understood the
subject to be familiar with this song, we had difficulty
impersonating the thought on our own, due both to lack
of familiarity and to the language barrier. (The language
of the song is Serbian). Our solution to this dilemma
involved playing a video of the Serbian National Anthem
on YouTube, and pretending to sing along as we wore the
brain reader. Interestingly, in this case, our attacks against
this subject were more effective than average, compared
to the overall success rate of impersonations in this study.
However, if YouTube had not come to our rescue, the very
notion that we could effectively impersonate this subject’s
thought would have been cast into doubt. This example
serves to illustrate one of many challenges an attacker
may face to impersonate a given thought. In particular,
thoughts may be especially difficult to impersonate when

arising from a highly individualized experience or when
involving an unfamiliar language. More generally, mental
thoughts may be difficult to impersonate not just from a
data comparison perspective, but also from considerations
of more basic conceptual feasibility.

Features of a system that are challenging for an attacker
are generally good for the system’s security. To this
extent, our observations support the feasibility of using
brainwave signals as the basis for an authentication
system, although many limitations remain. For example,
the error rates for our system are still high compared to
authentication systems based on other biometric data such
as fingerprints. Our data set is relatively small compared
to what we would likely need for a usable implementation.
We only addressed one type of attack and showed that
some secret knowledge can make these attacks more
effective. Another potential limitation is perceived bias
from having the paper’s authors serving as attackers.

For future work it remains essential to develop data
processing enhancements that further reduce the
authenticator’s error rates in general, to increase the
number of test subjects, to use recruited attackers, and to
integrate the data processing methodology with a
real-time authentication framework. It also remains to
address the susceptibility of brainwave authentication to
other plausible types of attacks such as digital signal
cloning.

Our goal in this paper was to measure the robustness of
brainwave signal authentication systems against direct
impersonation attacks. Building on the authentication
system from [3], we simulated several thousand
impersonation attacks and categorized the results to
examine how knowledge conditions about the defender’s
secret thoughts might impact the attacker’s success rates.



We found that, in general, the success rate of impostor
authentications is low, which bodes well for the feasibility
of brainwave authentication systems in general. We also
found that knowing the subject’s task, or task secret,
provided at best modest improvement over just thinking
in a focused way about something completely different.
Evidence for most of the trends observed in our results are
at best mildly supported statistically. Our most robust
result is that brainwave signal authentication systems
appear to be fundamentally grounded in their more
classical biometric components. That is, the extent to
which my thoughts are not your thoughts is based less on
“what you know” than “who I am”.
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